首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   60篇
  2021年   12篇
  2020年   7篇
  2018年   7篇
  2017年   4篇
  2016年   10篇
  2015年   14篇
  2014年   33篇
  2013年   26篇
  2012年   49篇
  2011年   36篇
  2010年   21篇
  2009年   15篇
  2008年   32篇
  2007年   26篇
  2006年   15篇
  2005年   23篇
  2004年   14篇
  2003年   20篇
  2002年   15篇
  2001年   12篇
  2000年   17篇
  1999年   11篇
  1998年   8篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   7篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1979年   15篇
  1978年   5篇
  1977年   7篇
  1975年   3篇
  1974年   6篇
  1973年   5篇
  1972年   4篇
  1971年   3篇
  1966年   3篇
  1963年   3篇
  1939年   4篇
排序方式: 共有634条查询结果,搜索用时 78 毫秒
41.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   
42.

Background

An action potential duration (APD) restitution curve with a steep slope ≥1 has been associated with increased susceptibility for malignant ventricular arrhythmias. We aimed to evaluate the “restitution hypothesis” and tested ventricular APD restitution slope as well as effective refractory period (ERP)/APD ratio for long-term prognostic value in patients with ischemic (ICM) or dilated cardiomyopathy (DCM).

Methodology/Principal Findings

Monophasic action potentials were recorded in patients with ICM (n = 32) and DCM (n = 42) undergoing routine programmed ventricular stimulation (PVS). Left ventricular ejection fraction was 32±7% and 28±9%, respectively. APD and ERP were measured at baseline stimulation (S1) and upon introduction of one to three extrastimuli (S2–S4). ERP/APD ratios and the APD restitution curve were calculated and the maximum restitution slope was determined. After a mean follow-up of 6.1±3.0 years, the combined end-point of mortality and and/or implantable cardioverter-defibrillator shock was not predicted by restitution slope or ERP/APD ratios. Comparing S2 vs. S3 vs. S4 extrastimuli for restitution slope (1.5±0.6 vs. 1.4±0.4 vs. 1.3±0.5; p = NS), additional extrastimuli did not lead to a steepening restitution slope. ERP/APD ratio decreased with additional extrastimuli (0.98±0.09 [S1] vs. 0.97±0.10 [S2] vs. 0.93±0.11 [S3]; p = 0.03 S1 vs. S3). Positive PVS was strongly predictive of outcome (p = 0.006).

Conclusions/Significance

Neither ventricular APD restitution slope nor ERP/APD ratios predict outcome in patients with ICM or DCM.  相似文献   
43.
For in vitro differentiation of bone marrow-derived mesenchymal stem cells/mesenchymal stromal cells into osteoblasts by 2-dimensional cell culture a variety of protocols have been used and evaluated in the past. Especially the external phosphate source used to induce mineralization varies considerably both in respect to chemical composition and concentration. In light of the recent findings that inorganic phosphate directs gene expression of genes crucial for bone development, the need for a standardized phosphate source in in vitro differentiation becomes apparent. We show that chemical composition (inorganic versus organic phosphate origin) and concentration of phosphate supplementation exert a severe impact on the results of gene expression for the genes commonly used as markers for osteoblast formation as well as on the composition of the mineral formed. Specifically, the intensity of gene expression does not necessarily correlate with a high quality mineralized matrix. Our study demonstrates advantages of using inorganic phosphate instead of β-glycerophosphate and propose colorimetric quantification methods for calcium and phosphate ions as cost- and time-effective alternatives to X-ray diffraction and Fourier-transform infrared spectroscopy for determination of the calcium phosphate ratio and concentration of mineral matrix formed under in vitro-conditions. We critically discuss the different assays used to assess in vitro bone formation in respect to specificity and provide a detailed in vitro protocol that could help to avoid contradictory results due to variances in experimental design.  相似文献   
44.
There is much interest in using magnetic resonance diffusion imaging to provide information on anatomical connectivity in the brain by measuring the diffusion of water in white matter tracts. Among the measures, the most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies local tract directionality and integrity. Many multi-subject imaging studies are using FA images to localize brain changes related to development, degeneration and disease. In a recent paper, we presented a new approach, tract-based spatial statistics (TBSS), which aims to solve crucial issues of cross-subject data alignment, allowing localized cross-subject statistical analysis. This works by transforming the data from the centers of the tracts that are consistent across a study's subjects into a common space. In this protocol, we describe the MRI data acquisition and analysis protocols required for TBSS studies of localized change in brain connectivity across multiple subjects.  相似文献   
45.
Biological Invasions - Native to the Ponto-Caspian region, the benthic round goby (Neogobius melanostomus) has invaded several European inland waterbodies as well as the North American Great Lakes...  相似文献   
46.
Changes in the redox state of the intracellular ryanodine receptor/Ca2+ release channels of skeletal and cardiac muscle or brain cortex neurons affect their activity. In particular, agents that oxidize or alkylate free SH residues of the channel protein strongly enhance Ca(2+)-induced Ca2+ release, whereas reducing agents have the opposite effects. We will discuss here how modifications of highly reactive cysteine residues by endogenous redox agents or cellular redox state influence RyR channel activation by Ca2+ and ATP or inhibition by Mg2+. Possible physiological and pathological implications of these results on cellular Ca2+ signaling will be addressed as well.  相似文献   
47.
Human serum amyloid P component (SAP) was expressed in the methylotrophic yeast Pichia pastoris. SAP cDNA was placed under control of regulatory sequences derived from the alcohol oxidase gene (AOX1), and its protein product was secreted using the Saccharomyces cerevisiae alpha-mating factor signal sequence. Recombinant SAP (r-SAP) was produced in a bioreactor with computer controlled fed-batch mode and purified by use of a C-terminal histidine tag. The yield of purified r-SAP was 3-4mg from 1L supernatant and 5-6mg from 1L cell paste, indicating that the majority of the produced SAP was not secreted. Treatment of the cell paste with EDTA increased the yield further by about 30%. The N-terminal of r-SAP purified from the supernatant showed non-complete cleavage of the alpha-mating factor signal sequence. Purified r-SAP, analyzed under native conditions, was shown to be a decamer, like purified human SAP (h-SAP), with monomers of 27kDa. Each monomer had one N-glycosylation site, positioned at the same site as for h-SAP. r-SAP bound to antibodies produced against h-SAP. Furthermore, r-SAP bound to ds DNA and influenza A virus subunits in a Ca(2+)-dependent manner and inhibited influenza A virus hemagglutination. These results indicate that r-SAP produced in P. pastoris has the same biological activity as purified h-SAP.  相似文献   
48.
We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical and biophysical requirements of a possible Skp-assisted folding pathway. In refolding experiments, Skp alone was not sufficient to facilitate membrane insertion and folding of OmpA. In addition, lipopolysaccharide (LPS) was required. OmpA remained unfolded when bound to Skp and LPS in solution. From this complex, OmpA folded spontaneously into lipid bilayers as determined by electrophoretic mobility measurements, fluorescence spectroscopy, and circular dichroism spectroscopy. The folding of OmpA into lipid bilayers was inhibited when one of the periplasmic components, either Skp or LPS, was absent. Membrane insertion and folding of OmpA was most efficient at specific molar ratios of OmpA, Skp, and LPS. Unfolded OmpA in complex with Skp and LPS folded faster into phospholipid bilayers than urea-unfolded OmpA. Together, these results describe a first assisted folding pathway of an integral membrane protein on the example of OmpA.  相似文献   
49.
50.
The completed fruit fly genome was found to contain up to 15 putative UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) genes. Phylogenetic analysis of the putative catalytic domains of the large GalNAc-transferase enzyme families of Drosophila melanogaster (13 available), Caenorhabditis elegans (9 genes), and mammals (12 genes) indicated that distinct subfamilies of orthologous genes are conserved in each species. In support of this hypothesis, we provide evidence that distinctive functional properties of Drosophila and human GalNAc-transferase isoforms were exhibited by evolutionarily conserved members of two subfamilies (dGalNAc-T1 (l(2)35Aa) and GalNAc-T11; dGalNAc-T2 (CG6394) and GalNAc-T7). dGalNAc-T1 and novel human GalNAc-T11 were shown to encode functional GalNAc-transferases with the same polypeptide acceptor substrate specificity, and dGalNAc-T2 was shown to encode a GalNAc-transferase with similar GalNAc glycopeptide substrate specificity as GalNAc-T7. Previous data suggested that the putative GalNAc-transferase encoded by l(2)35Aa had a lethal phenotype (Flores, C., and Engels, W. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 2964-2969), and this was substantiated by sequencing of three lethal alleles l(2)35Aa(HG8), l(2)35Aa(SF12), and l(2)35Aa(SF32). The finding that subfamilies of GalNAc-transferases with distinct catalytic functions are evolutionarily conserved stresses that GalNAc-transferase isoforms may serve unique biological functions rather than providing functional redundancy, and this is further supported by the lethal phenotype of l(2)35Aa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号